Physicists propose a second level of quantization for quantum Shannon theory

Information theory, which was developed by Claude Shannon starting in the late 1940s, deals with questions such as how quickly information can be sent over a noisy communications channel. Both the information carriers (e.g., photons) and the channel (e.g., optical fiber cable) are assumed to be classical systems, with well-defined, perfectly distinguishable states.

In the past two decades, physicists have been developing a quantum version of information theory in which the internal state of each information carrier has quantum properties, such as superposition—the ability to occupy two or more classical states at once. But the transmission lines are generally still assumed to be classical, so that the path taken by messages in space is always well-defined.

Now in a new paper, physicists Giulio Chiribella and Hlér Kristjánsson at the University of Oxford and the University of Hong Kong have proposed a second level of quantization, in which both the information carriers and the channels can be in quantum superposition. In this new paradigm of communication, the information carriers can travel through multiple channels simultaneously.

Adapted from: Physicists propose a second level of quantization for quantum Shannon theory by Lisa Zyga , Phys.org

Advertisements

4 thoughts on “Physicists propose a second level of quantization for quantum Shannon theory

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s